JOURGEN HUMBURG

THE BAYES RULE IS NOT SUFFICIENT
TO JUSTIFY OR DESCRIBE INDUCTIVE
REASONING

1.

I will state in my report a proposition concerning the system of
Richter which I found 20 years ago. Furthermore I will present some
generalizations of the original proposition, especially a gencralization
concerning the systems of Carnap and the systems of de Finetti and
Savage. The generalization concerning the systems of de Finetti and
Savage has only the form of a conjecture which is a part of a research
program of mine. '

" The above-mentioned proposition says that induction in all these
systems i only possible if we accept some empirical hypothesis; it is
jmpossible to explain within these systems how we get such a hypo-
thesis. In a general sense no induction in these systems is possible.

Finaily I will outline how from my point of view induction works.

2. THE SYSTEM OF RICHTER (R)

(a) Direct Theory: Richter postulates the existence of an objective
probability in nature. He claims that for each experimental description
there exists an objective probability for the possible outcomes of this
experimental arrangement; in the following, for the sake of brevity, we
use the word “experiment” instead of “experimental description”.
Remark: We must presuppose that such an experimental descrip-
. tion for which we postulate an objective probability in nature, has
exactly one realization. Of course we could also consider experimental
schemata which permit repetitions, but we cannot assume that the
different instances of such a schema have a priori the same objective
probabilities, because that is already an empirical hypothesis which we
can not make a priori; we postulate the existence of an objective
probability only for a single experiment, not for schemata of experi-
ments. — There is some confusion in the paper of Richter on this point.
(b) Richter states some simple axioms that the probability of a
disjunction may be calculated from the constituents of the disjunction;
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from these axioms he proves that this postulated objective probability
can be measured in such a way that the addition principle holds.

{c) Richier introduces the nation of physical independence which,
briefly described, means (hai befween two experiments there is no
physical interaction. With a few simple axioms he shows that, for two
experiments which are physically independent, the cosresponding
probabilities will be multiplied to get the probability of the con-
junction of the cutoomes of these experiments.

"The objective probability of an event E in an experiment H we
designate by p{E|H); if no confusion is possible we simply write
pED.

{(d) H we consider an experimental description H, and E is a
possible outcome of H, we alse may consider the experiment H A E,
which is the performance of H with the additional information that ¥
has occurred. With a few axioms Richter shows that for the prob-
abilities under the conditional experiment H A E we have:

PlAIH A Ey=p(¥ . Al H)p(E|H).

which is the usual formula for the conditional probability. ¥ no
confusion is possible we write simply p(A | E) instead of p(4A | H A E).

(e} Richter points out that, with these notions alone, no induction is
possible, ie., that it is impossible to describe by these notions alone
how we will get information about the unknown postulated objective
probability. Richter shows in particular that the confidence test does
not work without further presuppositions; it only works if we accept
some hypothesis, usuaily called an a priosi hypothesis, as very credible.

{) Indirect Theory: Richter concludes that we must have, in ad-
dition to the notion of objective probability, a notion of a degree of
credibility. That means we need a function ¢ which gives the degree
of belief in an hypothesis about objective probability. To work out this
notion is the aim of his indirect theory.

First he points out with a few axioms that we can measare this
degree of beliet in such a way that ¢ is additive. Without further
foundation he assumes that it is further g-additive.

{g) 1 must now offer some details: Cur universe of experience we
describe by a chain K of successive experiments H, K=
(H', FH?, F*,...). Each experiment F{' has the possible outcomes
x4,..., xi; for reasons of mathematical simplicity we presuppose in
the following k, = k. A possible objective probability = on K is given
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by the following countable vector:
=g, phploe, )
with
po=plxd), pl=plxi|xf), phio=p(x] | x], . 2l .. ..
The space of all this vectors we designate by ¥, The belief-function ¢

is a function on a o-field @ over I, namely the following product
space:

P=@ Fio,

LAY

SN+ s the Borel space over the following simplex:

5= {(Pf{): L P 1}-
I=isk

{h) Mow Richter asks in which way we modify this belief-function ¢
to a function ¢ if we make an observation E in the chain K. By quite
simple axioms he deduces the following formuda: dg™ = m{E) dé(w);
to express that, in this formula, ={F) is a funciion of # and E is fixed,
we sometimes write E(m) = «{E).

Richter does not presuppose that ¢ is normalized; in particular he
admits that it is not possible to normalize ¢ at the very beginning of
our observations, i.e. that we have &(II)=c. If it is possible to
normalize ¢*, we get the following formula:

de* = E{m) deb(m) / 5[ E(m debl(m).

Tn this form, Richter’s rule is analogous to the Baves rule, with the
only difference that we distinguish between two kinds of probability,

- the “subjective” ¢ and the objective #»{E).

In the following we will call Richter’s rule simply Bayes' rule.

(i) We need a further notion: If we have a belief-function ¢,
Richter thinks that it is possible to do an estimation of the unknown
objective probability. By simple axioms we get the following estima-
tion function y, which Richter calls chance:

x(E 9= [ B datm [ [ apm.
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{}) I we observe the event E, we change ¢ into ¢* and get the
following new estimator: y(A| ¢ . E):= [n{A| E)dé™/[ do*.

{k} The estimator y obeys the laws of subjective probability, ie.,
fulifils the addition and multiplication principle; in the sense of
Carnap, who explicates his confirmation-function as an estimator of
objective probability, the chance y is the general form of a confirma-
tion-function.

{1} The usual confidence test is now possible if we assume that the a
priori hypothesis # has a degree of belief ¢{#)=1—~¢. H o« is the
error probability of this confidence test, we have a certainty at least as
great as {1 - o}l — ) that this confidence test will be successful.

3.

Now the guestion anses: From where do we get the belief-function ¢?
Richier gives the following explapation (E): (see (R), V §20, p. 311):

(£} Die Aufstsllung der Glaubwirdigkeitsgrade geschiet in-
toitiv durch  @berschiigige Anwendung von F  zur
Anderung einer Gleichgewichtung, die einem mehr oder
weniger gut vorstellbaren Zustande viilipen Nichtwissens
entspriche, unter Verwendung unserer gesamten, gerade
im BewuBtsein befindlichen Erfahrung anstelle eines Ver-
suchsergebnisses. (F is the BAYES rule).

In other words:

The belief degrees we get by applying intuitively the
BAYES rule to an equidistribution, which corresponds to a
more or less imaginable state of ignorance by using as
event E our whole observational material.

4.

I will now show that this explanation (E) is wrong and that it is
impossible to get a belief function ¢ by the means of Richter. A
worked-out presentation of the following proof you may find in my
Diplomarbeit ().

An equidistribution on =%k seems to be the product
measure ¢y of the equidistributions of the simplexes §7. Letting B be
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an element of a finite segment of the product space P, we then have:

d)(;(B) = E i j'dpi . dpk_"g dp} e dp}c---l PO dpimg(/[SiN.
B
N 15 the number of simplices & over which we integrate. Because §7
has the dimension k — 1 we integrate oaly from the variable pi to the
variable pi.4. I think in this form we see that ¢, is an equidistribution

which may correspond to ignorance.
Let us now assume that x] occurs. Then we get ¢§ according 1o the

Bayes rule as follows:

$§(B) = f j prdpy .. dpe_y dpi L dpEof/] SV
B

Having performed the experiment H', we are interested in the sub-
sequent chain K' = (H¥, HY, ..}, H" := H' » £}; we therefore project
the measure ¢§ to the field @ = F @ F' @ F R ..QFH L& . ;
this gives the measure &', which is characterized as follows: Let B be
an element of 4 finite segment of #'; then we have:

¢'(B):= $5(S, BY

= § j j, 7 dp; . dpees dpl L dphs s
5

B

According to the theorem of Fubini we get

G(B)=a. g f dpl ... dpk-F/lSY

B

with o = j pdpy . dps.
&

We see that ¢ is again the eguidistribution.

We seem to have the following result: In the system of Richter the
process of induction is impossible. If we know nothing. we cannot
learn anything.



384 JUORGEN HUMBURG

5.

Without proof T will state that the chance y, which originates from the
belief function oy is the Witigenstein-function <. of Carnap’s A-
systerm. For this function yo we have the chance one that the relative
frequencies of each atomic outcome will converge against 1/k, or
formally: yolli,{(x;)—1/k) = L

i we know nothing we cannot have the certainty one that the
relative frequencies converge against 1/k. Therefore the function ¢
18 not adeguate the state of ignorance. Hence we have the following
result:

THESIS. | we know nothing we cannot say anything, in particular we
cannot give a probability evaluation; there does not exist a probabiiity
distribution which is adeguaie to knowing nothing: Each probability
distribution makes some empirical claims,

5,

We may still doubt the above results, firstly because the equidistribu-
tion on 9 is not a canonical notion but depends on the scale we apply
to @, secondly because we can doubt whether the notion of equidis-
tribution is adeguate at all and whether with another 4, induction in
the systern of Richter is nevertheless possible. We will therefore
investigate the following formulas, by which I hope to have compre-
hended quite generally the question of whether in the system of
Richter induction is possible,

{a) Let 4% be the normalized modified belief function & after n
steps of observation and consequenty n sieps of moddication.

Induction is possible in the sysiem of Richter if there exists a belief
function & with the property: Relative o each possible objective
probability # there is objective probability one that the beliel functuon

¥ will converge against 2 beliel funcuon o which assigns this
ohiective probability o the measure one; formally:

3V alle: ot g ag(mi=1=1;

¢ - o .
~» REans convergence in some fopology, for instance the vague or the
weak topology; as demonstrated in section (%), it is impossible to
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demand the convergence for each argument; that would be nonsense.

(b) Another, 1 think weaker form, of this principle we get if we
consider the chances. Induction in the system of Richter is possible if
there exists a chance y(A| & . {w,}) - the chance after n observations
- which converges relative 1o each possible objective probability o
with probability one against w; formally:

Al ad) Vo ey ¢ o) > ) =1
w, i the observed ouwtcome after realization of HY, ..., H". The

exact signicance of the convergence 5 we will let open for the mo-
ment. | think that (**) will follow from (%) because the function
#iAHw,}) is bounded by one and continuous and thetefore by ine
tegrating (%) we will get (*%),

Now 1 will proof that (**) is wrong.

First we must now make the fellowing trivial assumption about the
convergence — ¢ Let the vector o consist only of components § and 1.
Let the vector @' consist only of components 1/k. Then it is impossible
for the chance »{. 1 & . {a,}) that we have both

x> and y— #,

Now let us assume that (%) is valid. We construct to each ocutcome @
of K a vector m,, consisting only of components 0 and 1, which assigns
exactly this oulcome o the probability one. Then we must have for
cach @ y(.| ¢ {wnh— m,. Let # =(1/k, 1/k,...). Then there

does not exist any o for which y(.{d. {xcan}):%» 7 and hence (**) is
wrong. Because (%) implies (*%), (*) is wrong.

We may reneat the thesis of (5).

Hach belief function excludes some possibilities of nature. There is
no vacuus belief funciion. It is not possible io conceive a prior
distribution & which corresponds to knowing nothing, and to take this
& as the Archimedian point from which by the Bayes rule we can do
induction and give a foundation of our knowledge. Such a prior ¢
does not exist.

Induction by the BAYES rule alone is impossible. If we know nothing
we cannot say anything, in particular we cannol give a probability
distribution.
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We may state that relative to these results the postulated objective
probability remains a metaphysical concept, which we cannot relate to
observational material.

In Section 9 I will give an example for which induction in the sense
of the above principles in the system of Richter is possible, if we
assume some hypotheses.

I do not think that the above results are reasons to reject the notion
of obijective probability. I think they only show that induction with the
concepts of the system of Richter alone is impossible as well as that
the introduction of the notion of objective probability is difficult.

7.

It is easy to generalize this result of Section (6} to the system of
Carnap, because Carnap has explicated his confirmation-function as
an estimator of objective probability. We can therefore state that there
dees niot exist 3 ¢-function from which, by the multiplication principle
~ the Bayes rule -, induction generaily can be explained.

I we consider for instance the function ¢, (h, €}, which is symmetric
in h for each information e, we never have convergence to the real
objective probabilities i these real objective probabilities are not
SYImInetTic.

Carnap realizes this and says in his reply to Putnam (Sch, 987 pp)
that we must admit that the c-function depends on the different
considered hypotheses, and 1 agree.

We have seen that it is noi possible to admit all hypotheses and to
describe induction generally by constructing a prior measure function m
which covers all possible hypotheses and by then using the Bayes rule.

I want to state explicitly that this result of course is not an argament
against the value of Carpap’s theory; it merely shows that each
inductive probability-function is only adequate if we presuppose some
empirical hypotheses.

8.

Tt is difficult to generalize the above results to purely subjective
probability systems like the systems of de Finetti or Savage, because in
these systems the notion of objective probability is suppressed and we
can not argue in the above way.

At the moment a full proof for the following proposition is not
available. I will therefore present it only as a conjecture.
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Conjecture: Each subjective probability function p on the chain K
has some empirical content, excludes some possibilities of nature and
cannot be presupposed in a state of ignorance.

If we know nothing, we cannot say anyihing, in particular we cannot
give ¢ probability distributien.

To explain this conjecture, we may consider de Finetti’s exchang-
able probabilities. As proved for instance in (H), these functions imply
probability one for the assertion that the limit of relative frequencies
exists; that is an empirical assertion which we cannot make a priori.

1 think that in this way it is possible to prove generally that each
probability function on K must make some empirical assumption, and
therefore no prior distribution exists on whose application the Bayes
rule generally describes inductive reasoning.

9.

We will now give an example for which Richter’s system in the
sense of the pripciples of Section (6} works, namely that the chain
K =(H', H? ..) is the independent repetition of an experiment H.
We confine ourselves to the case k=12,

Then the vector = is characterized by one number 8, the possible
objective probability of the outcomes xy. As ¢ we may choose the
equidistribution on the unit interval.

If r is the number of occurtrences of xy i w,, we have

molfen)) = 87(1— 8"k = 7(1~ )" a8,

The measure $% has the following density:

\
|

AN

& ] H

Fig. 1.
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&% converges, informally speaking against 2 d-function with increas-
ing #.
Let $% be normalized; then we have, as is exactly proved In (H): If

#/n - p thea $7{8) jo‘»@‘{éﬁw pi I is the Diirichlet step function and
D(6~— p) is the measure which exactly gives the point p the measure

one. <5 symbolizes the distribution convergence. Further the strong
law of large numbers holds, i.e., m{rin—+ 8} = 1, and hence we have:

meliee t pE(x) 5 Dix— &)= 1 forali 6.

Hence we ses that under the assumption of independent repetition
in Richter’s system, induction in the sense of (6) is possible.

As mentioned in Section (8), i would be nonsense to demand in
the above fermuiad that I8}~ 1, we must considir the disiriba-
(10N CONVEergence —+.

10, HOW DOES INDUCTION WORKY

I will fry to explain how from my point of view Induction works. T use
some notions of my book “Grundzige 7u einem neven Aufbau der
Wahrscheinlichkeitstheorie” (H); a short version in English you find
in ().

Let us consider for instance the expermuent of throwing a die and let
us presuppase that we know nearly nothing.

We may now assume for instance that this experiment has the
following properties: By our fundamental sensory capacities, we ai-
ways will realize that the successive throws of the die are similar
processes; we may nol perceive any differences in the successive
throwing of the die; for instance we will not perceive that the die
contains a clock chanping the die.

Under this presupposition, T think we will be willing to form a
concept, to make a hypothesis, namely the concept K of similarity,
which means: We will think that throwing a 6 with the die today is as
probable as to do it tomorrow; Turther we will think that 1o throw a 6 &
fimes today will be as probabie as to do it tomorrow.

From this concept X it follows, as showa in my book (), that the
limit of relative frequencies exists, especially that this concept is
equivalent t¢ the hypothesis of independent repetition.
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Now we can make some probability prognosis concerning these
experiments.

Let us now assume that we observe that often evenis ocour which
are very improbable. Then we may perhaps conceive a new hypothesis
K', which we will compare with K in the following way:

We may give the two concepis a subjective probability, for instance
to each 1/2, and then use the Bayes rule to get, by further obser-
vations, a decision between the two hypotheses. — And so we go on,

Of course I will not suggest that we must start with the concept of
similarity, although it #s especially simple, fundamental and frequent. -
The forming of the concept K of similarity resembles the way in which
Hume described inductive reasoning. — Bui of course a situation is
possible where we start with another concept.

} think induction works in this way: We assume a hypothesis which
seems reasonable relative to our elementary sensory perceptions and
then go on in the described way.,

Of course we will never gef absolute certainty for an accepted
hypothesis. We only can say that we have worked with an accepied
hypothesis so successfully that we have never found another hypo-
thesis which according to the Bayes rule we had to prefer to this
accepted hypothesis.

I want to repeat my central resuft; It is not possible 1o consider at
the very beginning of induction all thinkable hypotheses and to look
for a prior on these hypotheses, corresponding to knowing nothing,
from which then the Baves rule gives us our knowledge.

The Bayes rule is not sufficient to justify or describe inductive
reasiiing.
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