Foundations of a New System
of Probability Theory

Jiirgen Humburg

The present work represents a summary of my book
‘Grundzilge zu einem neuen Aufbau der Wahrscheinlich-
keitstheorie’ [5]. For this reason, ! have frequemtly dis-
pensed with providing proof and in this connection refer
the interested reader to my book.

ABSTRACT, 'The aim of my book is to explain the content of the
different notions of probability.

Based on a concept of logicel probability, which is medified
as compared with Carnap, we succeed by means of the mathe-
matical results of de Finetti in defining the concept of statistical
probability, :

The starting point is the fundamental concept that certain
phenomena are of the same kind, that certain occurrences can be
repeated, that certain experiments are ‘dentival’. We introduce
for this idea the notlon: eoncept K of similarity . From concept X
of similarity we derive ‘logically” some probabilify-theoretic con-
clusions:

If the events £(3) are similar — of the same kind — on the basis
of such a concept K, it holds good that intersections of n of these
events are equiprobable on the basis of X'; in formulae:
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On the basis of some further axioms a partial comparative prob-
ability structure tesulty from K, which forms the starting point of
our forther investigations and which we call fogieal probability on
the basis of K.,

‘We investigate a metrisation of this partial comparative structure,
i.e. normed ¢-additive functions my, which are compatible with
this structure; we call these functions iy measure-functions in rela-
tion to K,

The measure-functions may be interpreted as subjective probabil-
ities of individuals, who accept the concept K.

Now it holds good: For each measure-funciion there exisis with
measure one the limit of relative frequencies in a sequence of the
E(N).

In such an event, where alf measure-functions coincide, we speak
of a quantilative logical probability, which is the common measure
of this event. In formulae we have:

Igthy, +limby) =1,
in words: Thete is the quantitative logical probability one that the

Himit -of the relative frequencics cxlsts. Another way of saying this
is that the event £1% 1= (A, — Lim B,) is a maximal element in the
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comparative structure resulting from £

Therefore we are entitled to introduce this limit and call it
statistical probability .

With the aid of the measure-functions it is possible 10 calculate
the velocity of this convergence. The analog of the Bernouwlli in-
equation holds tme: . :

mplihy —P1<ey 21— 14ne®,

1t is further possible in the work to obtain relationships for the
concept of statistical independence which are expressed in terms of
the comparative probability.

The theory has a special significance for gquantum mechanics:
The similarity of the phenomena in the domain of gquantum mechan-
jus explains the statistical behaviour of the phenomena.

The usual mathematical statistics are explained in my book,
But it seems more expedient on the busis of this new theory to
use besides the notion of statistical probability also the notion of
logical probability; the notion of subjective probability has only a
heuristic function in my system.

The following duslism is to be noted: The stafisticel behaviour
of similar phenomena may be described on the one hand according
to the model of the classical probability theory by means of a
figure called statistical probability, on the other hand we may ex-
press all formulae by means of a function, calied statistical probabil-
ity function. This fupection is defined as the lmit of the relative
frequencies depending on the respective state w of the universe. The
statistical probability function is the primary notion, the notion of
statistical probability is derived from it; it is defined as the value
of the statistical probability function for the frue unknown state
& of the universe,

Ay far as the Hume problem, the problem of inductive inference,
is concerned, the book seems to give an example of how to solve it.

The developed notions such as concept, measure-function, logical
prabability, ete. seem to be importani beyond the concept of similar-
ity,

SYMBOLS

B denotes the empty set;

2 denotes the starting set taken as a basis, w the respective
variable for the elements of £2;

A+ B denotes the union of the sets 4, B

A . B denotes the infersection of 4, B; ;

A denotes the complement of 4 with respect to the starting set
|31

T~ A; denotes the union of 4;;

1~ Ay denotes the intersection of A;;
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At+tBi=A+R A . B=9,

EA; =B Ay, i 4y . Ap= 0 for allf, f with { # .

Let & be a subset of the power set .92 {02) of Q; then By
denotes the Borellian extension of %, ie. the smallest o-ficld
which contains ¥, :

The measurable space taken gencrally as a basis is designated by
(2, ). Wé write a ¥ -messuzable function (rendom variable) in
the following manner, flw), A{ew), p(w), etc. '

To the actual true nommally unknown element & of 2 we
introduce for such a funaction the following symbol (bold face} :
o= f{o).

1. The concept of logical probabiity
(3.1.) We start with a measurable space (82, .5 ) of evens.
(3.2.) The simple logical probability

From the logical structure of certain events 4, B the follow-
ing expression resulfs:

A L B; in words: for logical reasons A is at most as
probable as B.

This expression can be clarified as follows: a bet on 4
is for logical reasons at most as good as a bet on B the bet
on 4 I8 to have the same stakes as the bet on B; for a more
exact explanation of the concept of a bet see {1.6),

Example, ASAVEB, A.BSA.

These examples are a special case of the following axiom:
AXIOM 0. {(FACBY= A<,

The substantiation of this axiom is very simple: If we can
deduce from the occurrence of 4 the ocourrence of B if we
bet on A4 the analogous bet on B is alse won, Consequently,
we shafl not prefer the bet on 4 1o the bet on B,

We do not intend investigating here whether further
axioms exist for thé above notion of logical probability but
furn to the ierm developed below of the fogical probability
on the basis of a concept.

(1.3.) Thelogical probability on the basis of a concept

By concept K we understand theoretical ideas T g_nd
information J which we combine to K =T A 1.

As you will see the foliowing proposition resuits from

the logical structure of X and of certain events 4, B:
A SK B; in words: on the basis of X B is at least as
probable as 4.

We thus teke the logical probability ‘SK’ to be a com- -
parative evaluation of certain events on the basis of a con-
cept K; the expression 4 SK B results solely from the
logical structure of X, 4, B in accordance with the axioms
to be formulated. o

Firstly, the following extension of axiom [ may be
formuiated:

AXIOM |, K X implies logically that A is contained in B,
in formuiae K+ 4 C B, then 4 SK B holds true.

The most essential axiom in this connection is obtained
with a concept K, on the basis of which certain events
E(), A€ A, are similar ~ of the same kind. This we explain
as foliows: The characteristics by which the events differ
are without influence on the occurrence of these events.
A more precise definition of the notion similar is obtained
by formalizing K and the E{\) in formal language: The
irrelevance of the different characterisations rsay be re-
flected in the formal structure of K and E(}). Firstly a

DEFINITION. 4 ~¢ B:® A <_ Band B, A; in words:
A, B are equiprobable on the basis of X,

AXIOM 2. If the events F(A) are similar on the basizs of K
we have FOG) . EQ) ~x EQG) L EQG), N # Ny,
ApFEN fori# ).

Such 2 partial comparative structsre resulting from a
concept K is called logical probability on the basis of K.

An example of the concept of similar events is a sequence
of polarized photons which hit a filter; E(i) := the ith
photon passes through the filter. On the basis of the ideas T
of guantum mechanics the chronological order of the
photons is of no importance regarding the passage through
the filter. _ )

Ancther example is the repeated throw of a die, given
the additional information that the die may not change in
the course of the repeated throws. The theorstical ideas T
in this case are the ideas of Newton's mechanics, An ex-
ample for a non-similar ensemble is the throw of a die,
given the additional information that the die contains a
clock, which changes the centre of mass of the die,

(1.4.) The measure-functions -

Ag already mentioned in (1.1.) we assume that the events
considered originate from a ofield ¥ over £, By the
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above axioms the comparative structure *<_* is defined for
certain ordered pairs of events {4, B); the entirety of these
{4, B) is designated #% .

DEFINITION. my is & measure-function fo the given
comparative structure °< ° when!
~K
{a) my is 2 measure.on ¥,
(b) mg(S2)=1.
(c) mg{Ay<<mgp(B) forall (4, B)of ﬁﬂx.

We confine our inferest in the fojlowing to the concept of
similarity.

(1.5.) The form of the measure-functions

Let the event field .F with the basic set £ be the Borelljan

extension of the events similar on the basis of X, EQ\),
AEAie: F=BEQrAEAL

PROPOSITION, A measure-function mg ont ¥ is clearly -

defined by the following numbers wy, = me(EQy) ...
E(Ap)), alt d; being different; according to Axiom 2
melEM) ... E(\,)) depends only on n but not on the
specific parameters A;. For proof see [5].

The following extension of the de Finetti theorem appiies:

DE FINETTI THEOREM. Presupposition: {A]= Rg.

(a} If 2 normed measure m fulfils on the g-field & pro-
duced by events E(A), A& A, the condition m{£(x,) ...
EA 1) = wy for Ay # 0y for £ %5 ], then there exists a normed
measure ¢ on the Borellian sets of the unity interval
with the property wy, = x™ d¢; for a general event 4 & .F
m(A) = Ipy(A) d¢ applies; pe(4) is the “probability’ of
A formed by the usual probability calculation, assuming
that the F(A) are independent with the fixed ‘probability’
x€ [0,1].

(b} Conversely, if ¢ represents a normed measure on the
Borellian sets of the unity interval, the definition m(4) :=
- [py(A) &4 leads to a measure-function on ¥ which fulfils
the conditions of (a).

Far proof see [51.

The family of measure-functions on F is thus given by the
set of all normed measures over the unity interval,

(1.6} The subjective inverpretation of the megsure-func.
tions as fair betting odds

We shall consider an individual . who accepts the concept
K and conciudes ‘bets’ on events according to the following

DEFINITION. A bet W on the event 4 is an agreement be-
tween .# and a ‘bank’ which states that % on the occur-
rence of A will receive the sum of money 32 0 from the
bank whilst .#" on the occurrence of 4 will have o pay the
amouat of money 52 0 to the bank.s, 5 denote stakes and
g:=5+7 is the total stake; it is always assurned that ¢ > 0;
¢ 1= sfg is called the betting odds of this bet. )

We sha#l consider systems (Wy, ..., W,) of bets,r=1,2,
3, ...or r=o_and assume that ¥ for cerlain systems %
%" knows whether he prefers the system % to the system
¥ in formulae #ee #7', or whether he considers the
two systems to be equally good, in formmlae %= %7,

This preference structure of _# for bets is to obey a
series of conditions which are set forth in [6] so that we
rmay speak of a rationai preference structure.

We need the following

DEFINITION. W denotes the inverse bet to W when W is
obtained by interchanging the roles of gambler and bank,
ie. for W: _# obtains on the occurrence of 4 the amount
s whilst on the ocecurrence of A he must pay the amount
F. W has the betting oddsg =1 — g,

DEFINITION. . considers a bet W to be fair when:
WEW.

On the basis of the simple axioms set forth in [6] on the
preference structure the following propositions apply:

PROPOSITION 1. For any event 4 there exists exactly one
fair betting odds g {4) dependently of 7.

PROPOSITION 2. 0= () < q{A)<g(02)=1.
PROPOSITION 3. g{ £ 4,0= T gq{4,).
n=1 n=1

The fair betting odds g(A) represent a measvre for the
subjeciive probability of ., The measure-functions may
therefore be taken fo be the fair betiing odds, the subjec-
tive probability, of an individual who accepts the concept
K.

For a more detailed explanation see {3}, [6].
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{1.7.) The completion of the comparative structure

From the interpretation of the measure-functions as possible
subjective probability results the following

AXIOM 3. M for all measure-functions of the concept K:
mg(Ey<my(E"), then let ES, B

This gives the following propositions:

EeT

PROPOSITION 1. The structure <K is transitive,

PROPOSITION 2. If for all i€ N: 4; <

S By, then applies
ZA ZB;.

i S

{1.8)) The quantitative logical probébiiizy

Let 4 be an event with the property that for & given con-
cept K each measure-function to this concept for 4 has the
same valie, We then introduce for the event 4 the follow-
ing designation: Ig{d4) = myldY; lg(4) is called the
quantitarive logical probability of A with the concept K,

The function lx{4) is thus defined only for specific
events; apart from the trivial examples A = and 4 =8,
in €3.1.) we shall meet an exampie of this.

It is easily verified that the domain of I is a ofield
Fy and Ig is 2 measure on Ly ; more exactly, (€1,
e, Ig) is & probability field in the usual mathematical
sense.

The definition of the guantitative logical probability
corresponds to the example of deductive logic: a proposi-
tion is logically true if for every interprefation it is given
the vafue ‘true’. Accordingly, 4 has the quantitative logical
probability Ix(4) if for every possible subjective probabi-
ity assessment 4 is given the same value {g{4).

From the considerations under (1.6} the following
resuits:

APPLICATION PRINCIPLE 1. Let the event 4 have &
quantitative logical probability Ix(A4). Let W be a bet on
A. Then Ig(A) represents for any individual accepting the
concept K the betting odds at which the bet ¥ is fair on
the basis of K.

(1.9.) The quantitative logical upper {lower} probability

In (3.4) we shall meet an event 4 having the property that

for every measure-function my to K there holds: myp{d) =
§> 0, although the values mg (A) are all different and thug
a quantitative logical probability for 4 does not exist. We

therefore introduce the following notions:
Ig(4) = sup mg(4),

ail my

oK

H

Jx(A) = inf mg(4);

allmy
to-K
Te (o1 Iy} are called quantitative logical upper (or lower )
probability respectively.
According to the considerations under (1.6.) the situa-
tion can be interpreted as follows:

APPLICATION PRINCIPLE 2. Let Wheabeton 4. If the
betting odds of W are smaller than Ix{4) then the bet Wis
to be preferred to the bet W. If the betting odds are greater
than Ig(A) then conversely the bet W is to be preferred to
the bet W, assuming of course that the concept K is accepted.

(2.10} The conditional concepls

Assuming that to the concept X the additional information
A is added which states that the event A € ¥ has occurred.
We shall first assume that on the basis of the information
A we pass to the concept X' 1= K A 4. Subsequently, in
(5.2.} we shall come across the case where we consider the
concept K to be broken down by the information 4 and
pass to a completely new concept K ew . However, it will be
assumed here that the concept X' corresponds in its theoret-
ical ideas to K and differs from & only by the additional
information 4.

MULTIPLICATION PRINCIPLE. Let g(F£) be the fair
betting odds of the individual .# for the concept X,
§'(E) for the concept K" =K A 4. Then forany E€.F we
have:

g(EY.q(A)=q{E . A).

For the proof of this principle see [6]. '

AXIOM 4. The concept K'=K A4 has the following
measure-functions: :

myg (B} = mg(4 . E)Ymyg(A)

Measure-functions with the property mg(4) = 0 do not
make any contribution on the transition to K. For on the



FOUNDATIONS OF A NEW SYSTSM OF PROBABILITY THEOGRY 43

basis of the coneept K only events £ C 4 play a part; a
measure-function with my(4) = 0 says, however, nothing
about events £ C 4 becsuse for all these events without
distinction mg (£} = 0 applies. Thus, such measure-func-
tions make no contribution on the transition to K’

The comparative structure following from K’ is defined by
Axiom 3:

PROPOSITION. Lét K’ = K A A4, then the comparative
structure SK’ results as follows from SK :

B S B ® By AS By 4.

2. The corcept of the experiment and statistical ensemble
(2.1.) Experiment and experimental schema

It is a fundamental principle of every science that a certain
experiment can be repeated, i.e. that certain phenomena are
of the same fype.

We shall attempt fo understand this principle as follows:
A class of similar experiments is given by an experiment in-
struction B within the language L which each of these
experiments must obey. To be more exact: We shall assume
that the description B contains a parameter A whose special-
isation defines an experiment; let there be no two experi-
ments which satisfy the description B(A).

Accordingly, we call

B(\Y 2 concrete experirent,

B = {8\ N € A} an experimenral schema,

As an example we shall consider the experiment M{x, ¢)
carried out by Michelson; the parameters (x, )} give the
place and time for the performance of the experiment,

The experiment descripiion 8 includes the statement
of which events are possible. We shall assume here that each
of the experiments B(X) has exactly & atomic possible
events £,(A), ..., £, (), i.e. the events £;(A) are to form a
compleis logical digiunction. E is called an event schema

of B when:
E={E(\): AEA} with EQU=E (A+ -+ E (A).

(2.2.) Generglization: of the concept of similarity

The notion that the experimenis B{\) are of the same type
is based with us on a concept K. Jn (3.1.) it is showna how
the notion of similarity is to be understood om the basis of

a_concept K. We shall now extend this notion to the en-
semble B = {B(Ax X&A}: The experiments B(A) are
called similar on the basis of K if on the basis of K the
parameter A is irrelevant to the occurrence of the events
E2). Analogous to (3.1.) we have:

AXIOM 5. From the similarity of the experiments B(?\) on
the basis of a concept K we have:

Ef,Oh) Ein(?\n) ~K Eil(ul) [EXS E}"(jln),
A F N Uy for T

where

PROPOSITION. Let B={B{(3): A €A} be similar on the
basis of & Let E={E(A): A& A} be any event schema of
B,ie. F(Ay=#; (\)+---+ & (A Then: The E()) are simi-
lar on the basis of X, ie.

EQa) ... B~ E(y ) ...
peEpy for isEf,

E{un) where A% A,

PROPOSITION. Let A; ={A4;0): A€ A} be any event
schemata to the ensemble B similar on the basis of K. |t
then holds that the events 4;(A) are similar, ie.:

A a4 )~ A G} o Ap (), M7,
wpFpy for P5Ef,

DEFINITION. If from the concept K the similarity of the
schema B follows according to Axiom 5, we cail the class
B a statistical ensemble on the basis of K,

The measure-functions. The measure-functions to this
more general structure are defined as in {(1.4.). In addition,
& de Finetti thecrem of more general character applies
which however we shall not require in the fellowing and
consequently will not set forth there. For more deiails see

‘[5].

3, The statistical behaviour of similar phenomena: The
notion of statistical probability

(3.1.) The convergence of relative frequencies

The starting peint of our observations is formed by a
statistical ensemble B={B{\): A€ A} on the basis of a
concept K and the ofield F=B[F0) 1<i<k, A EA)
over the basic set £2, and any event schema E of B,

We now wish to prove the following: On the basis of the
concept K with quantitative logical probability one any
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realization sequenice of B has the same limit of the relative
frequencies for the occurrence of the events E(A) in this
sequence. '

Ta prove this we shall consider 2 fixedly predetermined
sequence B\ . he(E, w) be the relative frequencies of
the event schema E in this sequence. We then define the
fotlowing function:

lim by, (E, e}, if this lmit exists
o

plE, w):= e .
O ,if the limit does not exist.

DEFINITION. p{E, w) s called the statisfical probability
function of E. .

Noie, According to its definition p(E, ) depends on
the specific sequence { A;}; it is shown in Proposition 2 that
pEE, w) except for an /g null set is independent of the
sequence { Az }.

Let Q=0%+ 0 with §% := {2 tim A,(E,w)}=p(E,w)}}.
Then: : B

PROPOSITION 1. 1£(£1*y = 1 or more exacily

!K({.w hn(E} ‘-")) AP(E: w)}) =1.

Proof. The proof resulis from the uvsual strong law of
large numbers in which the de Finetii theorem of (1.5.) is
applied. For according to this law, with the symbols of
(1.5.) the following equation holds true:

px({o: by (B, w}>xp)=1.

Since {w: f,(E, ) = 23 C {w: ,(E, W)+ p{E, w)}
there foliows p (Lo A,(E, 02) =~ p(E, )1} =1; the integra-
tion of this equation with respect to ¢ gives! mg{{c:
P (B, )y p(E, w)}) =1, This holds true for every my;
it follows from this that the proposition is frue. ’

Considered mathematically, Proposition 1 is nothing
other than the law of strong convergence of the large
numbers for symmetrical probazbility functions and is
found in principle already in de Fineiti. The expression
Ig{{wt By (E, ) —»p(E, )= 1 is intended only fo make
obvious that convergence of the relative frequencies rep-
resents with practical certainty an objective corsequence
of the concept of similarity. The statement Ix((i*)=1
can also be expressed as follows: 0% ~¢ (2. This means
that the event of the convergence of the relative frequen-
cies is a maximal element, equally probable with the
logical certainty, in the comparative structure resulting
from the concept K. In this form the fact that this siate-
ment is an objective consequence from the concept similar-
ity is particularly clear.

PROPOSITION 2, Every two reelization sequences have
with quantitative logical probability one the same dimit of
the relative frequencios: e ({limy, »mfty = lim, =
1, in this let &, = A,(E, w) be the relative frequency of E
in the sequence B{\;) and k;, in a sequence B(A}).

For proof see {5].

(3.2) The notion of statistical probability

To reconsirue the classical probability caleulation on the
basis of our statement we musi associate with each event
schema E of a statistical ensemble B a number, the statisti-
cal probability of E. Following Mises (see [8]) we define
the statistical probability as limit of the actually cccurring
relative frequencies; this limit exisis with gquantitative
logical probability one.

More exactly. Let & be the true result from £2, normal-
1y unknown to us, and actuaily existing in nature.

We then call the following rmumber

P{E) = p(E, &)

the statistical probabitity of E.

Bach event 4 of F comesponds to a statement A,
which states that 4 has cccurred, We denote the functions
my, le, e, Ix transfersed to the statements with my, I,
etc meld) 1= mp(A4), 1L (4) = {4}, ete.; it should be
noted that logically equivalent sfatements are given the
same values my, .. The statement A is logically equivalent
to the statement &€ A. Consequently, from (3.1.) the
proposition i,( € 2%)= 1 results. The statement & & 0%

. islogically equivalent to the statement h,{E) -+ P(E), where-

in bu{E) := A, (E, &)}, Consequently:
| lhn(E) > PEN=1 |

The dusalism of the formulas for the statistical probability
ang the statistical probability function applies for all the
formulae derived by us below.

Note. Whereas the notion of the quantitative logical
probability related to a concrete event the notion of the
statistical probability or function relates to an event schema
E and generally says nothing about a specific E{Ag) of E.
For in general a specific £(x ) does not define the event
schema E clearly. For more details see [5].

(3.3} The addition principle for the statistical probability

Let E, E' be two disjunctive event schemata of B, Then the
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following is true:

({w p(E+E,w)=p(E,w) +p(E\w))=1 or

[ (PEE+E)=PE)+PEY) =1]

The proof results from (3.1.) and the additivity of the
relative frequencies.

(3.4 The velocity of the convergence

The above results only have a practical sigaificance if we
know something about the velocity of the convergence
of the relative frequencies. Now, this velocity can be
estimated with quantitative logical probabiiity. The analog
of the Bernculi inequation holds true:

(3) Ix{{w: | 1,(E, )—p(E, M <eD= 1 —1fdne*

|11 ho(E) — PEE) | < ) 1 — Lane?|

B} Ix({w:] ha(E, @) ~hy(E, )| <eD>
: -1 11
-l atae

B(1hafE) = () €2 1~ 1 iy

For proof see [5].

(3.5.) The notion of the subconcept

DEFINITION. K is cal!edasﬁbconcept of K if the measure-
functions permitted on the basis of K form a subset of the
measure-functions permitted on the basis of X.

From this follows according to Axiom 3:

4 SK B+ 4 S}f B,

(3.6.) The concept K,

Let E be any event schema of By x € [§, 1]. We then define
in accordance with (1.10.):

Ke *KEANA with 4= {w:p(E, w)=x};
A4 P(E)=x,
As a brief consideration wilt show, (1.10.) gives exactly

the function p, (see (1.5.)) as a measure-function with
respect to K. Thus, in particular the following applies:

K, is & subconeept of &
The following also applies:

I (BO) = P (BOD=x=P(E) ™ 5™ ™ 5(E ).

The quantitaﬁve logical probability of E(A) is on the
basis of K, equal to the statistical probability , or I -almost
sure is equal fo the statistical probability function. This
shows why we also call these quantities probability, as was
originally conceived in the sense of {air betting odds.

An example for the concept K, is a com tossed repeated-
ly whose symmetry has been proved by precise measure-
ment; then we may accept the concept Ky .

(3.7)) The concepts K*

DEFINITION. Let E be any event schema of B. The con-
cept K ¥ is then characterized as follows: Only such measure-
functions mys are permitted such that for the event schema
E the following helds true: The measure ¢* associated in
accordance with {1.5.) has a continuous positive density
on the unity interval: d¢*=f{x}dx; f coatinuous and
positive. K * is thus a subconcept of K.

A concept K% is given exactly whenever the existing theo-
retical ideas and information do not make obvious any
probability-theoretical singularities with regard to the
nature of P(E). )

Tet B(A;) be any realization sequence of B. After n
attempts let E(QA} occur 7, times and E() occur (7 — )
times. The following then holds for the measurefunctions
associated with the concept K:: 1T K*A{h, = rm(a'z)1
in accordance with the multiplication rule (1.10.) provided
BEA= N, ) :

gy (E() - E(ue)) =127 467
with
S
XM —x)" T g
PROPOSITION 1. Let &, , (x)=mgp " ({w:p(E, )<
x7}) be the distribution function associated with the meas-
ure ¢§, oo If the relative frequencies r,/n converge towards
p when n tends to infinity, the distribution function KIJ,’f, n

converges . in the sense of the distribution convergence
towards D(x - p); D(x) represents the Dirichlet function:

D{x):= {g if i;g’ . For proof see [5].

do*.

d¢§, py T
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Thas we have from (3.1.):

PROPOSITION 2. Lat @:I # (02) denote the dépendence of
the above distribution function on ¢, since of course »,
depends o . Then:

(1691 9, gy > P05 — P(E, DD =1

This proposttion can be described as follows: The concept
K * converges with increasing information with quantitative
logical probability one towards the concept Kpg defined
it accordance with (3.6.); in formulas:

K:,‘ Z=K;Z:rn((;’):

len (K> Kpey) = 1

PROPOSTTION 3. m(c) :=mgy (o (E(Ay 1)) is the
conditional subjective probability of £(, ) on the basis
of the condition hy, =#,/n. The following then holds good:
levf{o mp(e) > p(E, e} = 1.

my 1= me(ed) is the conditional subjective probability
actually occurring in the course of the observation. The
following holds true;

lx*{m?',‘—>P(E))=1J

This proposition again illusirates the reasons why we
brought p{E, ) and P{E) inio connection with the word
probability. According to the above formula PIE) is the
limit vajue, independent of any information and subjective
arbitrariness, of the conditicnal probability of every possible
subjective probability assessment of the concept K *.

4. The notion of statistical independence

(4.1.) Definirion of the statisticel independence on the basis
of K

Two events schemata A, and A, of 2 statistical ensemble
B are called on the basis of K statisricelly independent if:
k({w:p(Ar . Ar, ) =p(Ay, w) o plAy, w)l)=1, 01

I"‘(P(AL,' Azy=P{A;) . P(A =1

(4.2.) Equivalent conditions for the statistical independence

Ay and A, are statistically independent oa the basis of X

exactly if:

Ay(a) o Ay - Aa(oe) . Aa(py)
~ A} . Aspg) 4308, . A28,

where it must be assumed that h; #X;, oy F 0y, 1f; 15,
8;#8; for i#]; it is, however, admissible that certain of
the A; coincide with certain of the p;.

Proof see {5].

5. The verification of concepts

{5.1.)} The concept of similarity of experiments results in
the convergence of the relative frequencies with quantitative
logical probability one. If we observe in nature a statistical
behavior — practical constancy of the relative frequencies
for a large number of conducied experiments — this con-
cept wiil be confirmed. The concept X will break down
if the relative frequencies do not exhibit practical constan-
cy. If a concept K becomes apparent which is ‘more’ in
harmony with experience than the concept K then the
concept K will be rejected in favor of the concept K. If in
the choice betweern K and X only the constancy of the
relative frequencies plays a part, from the “Bernoulli in-
equation’ derived under (3:4b) logical error probabilities
for the rejection of X can be calculated.

However, in general the situation on comparing K and
K is more complicated, For more exact details see [5].

(5.2} Example for the ebandonment of the concept of
similarity

If we observe that in successive throwing of a dice after
every ninth throw the six appears whilst otherwise the one
occurs we will abandon the concept K of the similarity of
these throws and adopt a concept K .., which states that
the throw experiment contains a mechanism which provides
the observed regularity. Within our formalism the concept
Kew is characterized i that it contains only the measure-
function #ip., which assigns to the above reguiarity the
megsure one,

It showld be noted with regard to this example that the
concept Kq.o also resulis in the convergence of the relative
frequencies so that the conditions formulated in (5.1} for
the rejection of K are not present. For more details on the
formal comprehension of this example see [5].
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6, The application of the theory to quantum mechanic

In quantum mechanics the concept of similarity appears
with particular stringency: Let us consider the example
given at the beginning of a polarized sequence of photons
which impinge on a polarization filter. The impingement
of the individual polarized photons on the filter represents
chronologically different processes which on the basis of
the ideas of quantum mechanics are similar becanse no
further distinction can be made between them by measure-
ments: No measurement exists on a polarized photon which
would provide any information an whether this photon is
more likely to pass through the filter than another photon
polarized in the same manner. Let us further assume that
the individual photons imfzinge on the filter at long time
intervals apart, about an hour; it is then clear that the
passage of » photons in this sequence is logically equally
probable to the passage of » other photons,

If the polarized photons impinge on the filter closely
adjacent to each other chronologically, it is admittedly
a priori not clear that the passage of & photon through the
filter is not influenced by the passage of the other photons
and 1o be exact would first have to be empirically con-
firmed. If, however, we assume that the impinging of the
photons on the filter represents isolated physical processes
it follows from this idea that the passage of »# photons is
logically equaliy probable to the passage of # other photons.
Consequently, according to the ideas T of quantum mechan-
ics outlined in this manner the passage of polarized photons
through a fitter represents a ciass of similar processes which
fulfit the Axiom 2 of (1.3.). Consequently, since these
phenomena are similar, they must exhibit a statistical
behavior. The above theory thus establishes a logieal rela-
tionship between the theoretical structule of the similarity

of the phenomena given in quantum mechanics and the

empirical observation of their statistical behavior:

The smzfsrz‘éa'{behavior of guantum-nechanical phenom-
ena is explained by their similarity.

Comversely, the statistical behavior of the phencomena
permits the concept formulation existing in guantum
mecharics of physical similarity of these phenomena.

7. Comparison with other probability systems

(7:1.) Comparison with de Finetti’s system

“The above systemn is similar in its mathematical structure
to the sysiem of de Finetti [4].

The difference between our system and that of de Finetti
is:

(1} The o-additivity of the measure-functions proved in
I6}. ‘

(2} That the notion of subjeciive probability is elim-
inated and replaced by the notion of logical probability on
the basis of a concept.

{3) For the symmetry of the measure-functions in the
concept K of similarity an objective basis has been created.

(4) The possibility taken into account theoretically in
(1.10.) and illustrated by an example in {5.2.) of abandon-
ing the concept of simitarity in the case of corresponding
information.

Quite generally, we criticize de Finetti’s system as
follows: Lei us consider for example radioactive decay: A
scientisi ¥ will then assume the concept X of similarity
and the laws derived by us which hold true for every
possible ‘subjective’ interpretation of the comparative
structure. However, in general he will not be able to define
a specific subjective assessment as binding for him. For on
what grounds should he select a specific subjective assess-
ment? We therefore maintzin that de Finetti's system is
onty rmade applicable by the construction made by us
in which only staiements are considered which held good
for every ‘subjective’ assessment without it being main.
tained that real individuals exist who made such a subjec-
tive assessment. :

€7.2.) Comparison with Carnap’s system

The above work is similar in the notion of logical probabil-
ity to the system of Carnap [1]. ’

As the above work shows, Carnap’s axioms imply the
statistical behavior of the phenomena. These axioms thus
have an empirical content and therefore cannot be inter-
preted as a priori characteristic of a formal language system
but must be based on a scientific concept with empirical
content.

As in de Finetti’s system it is also impossible in Carnap’s
system to abandon the symmetry of the messure-functions
on corresponding observation. As explained in (7.1.) we
congider this attitude to be untenable.

(7.3} Comparison with Mises’ system

The above structure is similar fo the system of Mises {8]
insofar as the statistical probability is also introduced as
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lignit of the relative frequencies. In conirast to Mises, in
our system Mises’ axioms do not hold strictly true but
only with quantitative probability one, or to be more
exact Mises” axioms freed from their original trivial contra-
diction.

We criticize Mises’ systemn as foflows:

(a) In Mises” system the phenomenon of statistical
regularities is only described but not explained as in our
systermn as a consequence of the concept of similarity.
Mises gives no condition, such as the concept of simﬂarity,

for deciding when an experiment sequence has the character- -

istic of convergence in infinity.

{b) The limit of the relative frequencies existing in
Mises” system does not necessarity result, as it does in our
system (see (3.6.)), in the meaning of fair betting odds for
each terms of the sequence, However, for the practical use
of the probability theory this interpretation is essentisl.
This defect could be remedied by adding to Mises system
a corresponding axiom. )

(c) Mises’ system provides no information on the
velocity of the convergence of the relative frequencies and
consequently has no practical relevance whatsoever because
only the bhehavior in the finite is of practical significance,
We note that of course in Mises' system as weli the
Bernoulli inequation can also be derived. However, in this
system this equation also only provides information on the
behavior at infinity of a collective derived from the starting
collective and provides no information whatever on the
behavior in the finite. As remarked under (b), only when
we add to Mises® systemn the axiom of the interpretation
of the limit as fair beiting odds does the Bernoulli inequa-
tion in Mises’ systern permit interpretation which leads
to 4 statement on the velocity of the convergence.

(7.4} Comparison with Kolmogoroff s system

The system of Keolmogoroff [7] introduces the notion of
probability as an undefined basic concept which obeys
certain axioms, The relationship with the relative frequen-
cies results for instance from the Bernoulli inequation:
p(15,(B) —p(E) = )< H4ne®.

Thig system is consistent in itself and also represents a
good description of the phenomenon of statistical regular-
ities. However, this system contains an epistemological
circle: The axioms required are motivaied by the probabil-
ity having to represent the ‘limit value’ of the relative
frequencies. Thus, it can only be said that Kolmogoroff's
theory describes the phenomenon of statistical regularities;

it provides no explanation of this regularity and attempis
to comprehend it in its axioms.

The circularity of Kolmogoroff’s system is particnlarly
clearly apparent in the Bernoulli inequation: The probabil-
ity p(£) 1o be explained is approximated in the mterior of
the formula by the relative frequencies; however, the meas-
ure of the approximation ‘iz also represented in the exterior
of the formuls by the p which itself has to be explained.
In contrast, in our system the degree of approximation of
the statistical probability by the relative frequencies is
expressed with the quantitative logical lower probability
Iz which has already been defined previously independent-
ly of the notion of statistical probability .

8. Conclusion

The basic concept of the present work was the notion of
the concept K. All further fundamental concepts were
obtained by successive ‘derivation’ from the concept X.
The result of the present work resided substaniially in

- the following

THESIS. From the concept K of similarity there follows
the statistical behavior of the phenomens; in particular,
on the basis of K a concept of the statistical probability
P can be defined. However, there is no logical certainty on
the basis of X but only a sureness which is practically
equivalent and can be called absclute that P has all the
properties usually required of the concept of statistical
probability, for instance that P is additive, or that the
relative frequencies converge toward P, ete.

The concept X is therefore not absolute but a scientific
statement, an overhypothesis, which can be verified by
observations.

Below we give a brief review of the questions which could
still be dealt with using the above concept:

{8.1) The o-additivity of P

Investigations of the statement
[ (Pisa measure oné) =1,

for the case that the devuain of P, the o-field of the possible
event schemaia in relation to the experimental schema B,
is not finite. ’
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The above statement is equivalent to the following
statement:

k({wi p(TA;,w)=Zp(Asw) for all A;EE])=1,

The investigations of this question appear difficult. It
would, howevei, be clear that the meastre property of P is
given only under certain regularity conditions applied to & .

The following statement is always vakid:

Ix{{co: p(ZA,, w) = Zp(As, )}y = 1.

€8.2.} Investigations with regard fo non-similar concepts

- Such as investigations om stationary sequences, Markoff
chains, concepts which fulfil with quantitative logical
probability one the Mises axioms, ete.

(8.3 .} The converse law of stadistical probebility

The converse of the thesis set forth above in the sense that
a statistical probability can only be defined if the concept
of similarity is assumed. For more details see [5].

(8.4.) Special investigations on the Carnap theory

Special investigations on the concepis Ko of the confirma-
tion and measure-functions worked out by Carnap ([1]-
{31); for instance determination of Zx .., ko tx o, Ik o

(8.5.) Special investigations on quantum mecharics

Special developments of the above theory for quantum
mechanics, the peculiarity of quanium mechanics being the
event field ¥ (A) belonging to the experiment B(\) is a
lattice and not a g-algebra, i

For the validity already maintained in this work of our
theory for the photon example considered see [5].

(8.6.} Investigntions of the Hume problem

In reference to an example we intend illustrating how,
within the framework of our concept formation, a certain
solution of the Hume problem is obtained, ie. the conclu-
sion from the observed to the unobserved, not stringently
but nevertheless with any desired high probability .

For an eveni ensemble E let the concept X of similarity
be presumed. In addition, only ‘deterministic’ observations
oecur, ie. it always hold that hy(E)=1.

Bt then results from the analogen to the Bernoudli in-
equation:

LAl —PEY <e)=1 - Lfdne®,

From this, by an adequate number # of observations
any desired cerfainty can be obtained so that: P(E}> 1 —¢.

Thus, on the basis of such observations we can go over
to the concept K; _,:=K A (P(E}>> 1 —¢) according to
(1.10).

A brief thought will show that on the basis of the con-
cept Ky, the following is true: fgr, (EQu)=1—¢;
E{xg) is any unobserved eveat of E.

Summarizing, it may therefore be stated: On the basis
of the concept of similarity by a sufficiently great number
of observations any desired certainty can be achieved for
prognosticating the unobserved event E(A,) if all observed
E{)\) have occurred.

This provides a certain solution for the Hume problem.
This solution is not absojute because the concept of similar-
ity is not absofute but a scientific statement which can also
be abandoned,

The concept K represents a type of uniformity principle
on the basis of which the Hume probiem can be solved,
For the position to be assigned to the “uniformity principle’
K, see [5].

Note

' hp = hp(E), see{3.2).
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